Lomonosov’s Invariant Subspace Theorem for Multivalued Linear Operators

نویسندگان

  • Peter Saveliev
  • PETER SAVELIEV
چکیده

The famous Lomonosov’s invariant subspace theorem states that if a continuous linear operator T on an infinite-dimensional normed space E “commutes” with a compact operator K 6= 0, i.e., TK = KT, then T has a non-trivial closed invariant subspace. We generalize this theorem for multivalued linear operators. We also provide some applications to singlevalued linear operators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Beyond Hyperinvariance for Compact Operators

We introduce a new class of operator algebras on Hilbert space. To each bounded linear operator a spectral algebra is associated. These algebras are quite substantial, each containing the commutant of the associated operator, frequently as a proper subalgebra. We establish several sufficient conditions for a spectral algebra to have a nontrivial invariant subspace. When the associated operator ...

متن کامل

Subspace-diskcyclic sequences of linear operators

A sequence ${T_n}_{n=1}^{infty}$ of bounded linear  operators on a separable infinite dimensional Hilbert space $mathcal{H}$ is called subspace-diskcyclic with respect to the closed subspace $Msubseteq mathcal{H},$ if there exists a vector $xin mathcal{H}$ such that the disk-scaled orbit ${alpha T_n x: nin mathbb{N}, alpha inmathbb{C}, | alpha | leq 1}cap M$ is dense in $M$. The goal of t...

متن کامل

Extension of Linear Selectors of Linear Fuzzy Multivalued Operators

We prove an extension theorem for linear selectors of linear fuzzy multivalued operators.

متن کامل

Generalized multivalued $F$-contractions on non-complete metric spaces

In this paper, we explain a new generalized contractive condition for multivalued mappings and prove a fixed point theorem in metric spaces (not necessary complete) which extends some well-known results in the literature. Finally, as an application, we prove that a multivalued function satisfying a general linear functional inclusion admits a unique selection fulfilling the corresp...

متن کامل

On the Krein-rutman Theorem and Its Applications to Controllability Vu Ngoc Phat and Trinh

This paper extends Krein-Rutman's theorem on linear operators leaving an invariant cone in infinite-dimensional Banach spaces to multivalued convex functions. The result is applied to obtain necessary and sufficient conditions for global controllability and reachability of nonlinear discrete-time systems described by convex processes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000